On a class of anharmonic oscillators

نویسندگان

چکیده

In this work we study a class of anharmonic oscillators within the framework Weyl-Hörmander calculus. A prototype is an operator on R n form ( ? ? ) ? + | x 2 k for , integers ?1. We obtain spectral properties in terms Schatten-von Neumann classes their negative powers and derive from them estimates rate growth eigenvalues oscillator . particular give simple proof main term asymptotics these operators. also some examples arising analysis Lie groups. Dans cet article nous étudions une classe d'oscillateurs anharmoniques dans le cadre du calcul de Weyl-Hörmander. Un est un opérateur sur la forme oú sont des entiers Nous obtenons propriétés espectrales en pour leur puissances negatives et derivons taux croissance valeurs propes l'oscillateur anharmonique En particulier donons preuve partie principale développment asymptotique ces opérateurs. aussi qui surgissent l'analyse groupes Lie.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Product Approximations for a Class of Quantum Anharmonic Oscillators

In this article we investigate analytically and numerically a class of non-autonomous Schrödinger equations in one space dimension describing the dynamics of quantum anharmonic oscillators driven by timedependent quartic interactions. We do so within a suitably constructed Faedo-Galerkin scheme by analyzing several product approximations for their solutions, which involve various exponential op...

متن کامل

Quantum anharmonic oscillators: a new approach

Abstract. The determination of the eigenenergies of a quantum anharmonic oscillator consists merely in finding the zeros of a function of the energy, namely the Wronskian of two solutions of the Schrödinger equation which are regular respectively at the origin and at infinity. We show in this paper how to evaluate that Wronskian exactly, except for numerical rounding errors. The procedure is il...

متن کامل

A quantum crystal with multidimensional anharmonic oscillators

The quantum anharmonic crystal is made of a large number of multi-dimensional anharmonic oscillators arranged in a periodic spatial lattice with a nearest neighbor coupling. If the coupling coefficient is sufficiently small, then there is a convergent expansion for the ground state of the crystal. The estimates on the convergence are independent of the size of the crystal. The proof uses the pa...

متن کامل

Zeros of eigenfunctions of some anharmonic oscillators

where P is a real even polynomial with positive leading coefficient, which is called a potential. The boundary condition is equivalent to y ∈ L(R) in this case. It is well-known that the spectrum is discrete, and all eigenvalues λ are real and simple, see, for example [3, 14]. The spectrum can be arranged in an increasing sequence λ0 < λ1 < . . .. Eigenfunctions y are real entire functions of o...

متن کامل

Phase synchronization of two anharmonic nanomechanical oscillators.

We investigate the synchronization of oscillators based on anharmonic nanoelectromechanical resonators. Our experimental implementation allows unprecedented observation and control of parameters governing the dynamics of synchronization. We find close quantitative agreement between experimental data and theory describing reactively coupled Duffing resonators with fully saturated feedback gain. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2021

ISSN: ['0021-7824', '1776-3371']

DOI: https://doi.org/10.1016/j.matpur.2021.07.006